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We construct a Riemann solver based on two-dimensional linear wave contri-
butions to the numerical flux that generalizes the one-dimensional method due to
Roe (1981,J. Comput. Phys.43, 157). The solver is based on a multistate Riemann
problem and is suitable for arbitrary triangular grids or any other finite volume tes-
sellations of the plane. We present numerical examples illustrating the performance
of the method using both first- and second-order-accurate numerical solutions. The
numerical flux contributions are due to one-dimensional waves and multidimensional
waves originating from the corners of the computational cell. Under appropriate CFL
restrictions, the contributions of one-dimensional waves dominate the flux, which
explains good performance of dimensionally split solvers in practice. The multidi-
mensional flux corrections increase the accuracy and stability, allowing a larger time
step. The improvements are more pronounced on a coarse mesh and for large CFL
numbers. For the second-order method, the improvements can be comparable to the
improvements resulting from a less diffusive limiter.c© 2001 Academic Press

Key Words:Godunov-type schemes; conservation laws; two-dimensional Riemann
problem.

1. INTRODUCTION

In the past decade there have been numerous investigations of the use of linear solvers
to account for the multidimensional nature of hyperbolic problems. The main advantages
of such methods are an improved stability, resolution properties, and preservation of the
directionally unsplit nature of the schemes [4, 11]. In particular, the adaptations of one-
dimensional solvers in preferred directions were studied in [5, 12, 16–18]. The use of
Lax–Wendroff type construction to include the cross derivative terms, which are in turn
discretized by using a one-dimensional solver, was done by LeVeque [11]. Collela [4] used
the corner transport upwinding method based on the predictor–corrector time integration in
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which predictor and corrector steps use different coordinate directions. Theoretical studies
of two-dimensional Riemann problems for both scalar equations and Euler’s equations were
carried out in [3, 13, 20]. Genuine two-dimensional solvers were considered in [1] using the
self-similar form of Euler’s equations, leading to a mixed hyperbolic–elliptic problem. In
[8] the formulas were derived for the linear 2-D Riemann problem for a subsonic case of gas
dynamics and rectangular initial conditions. The Method of Transport that does not use a
Riemann problem was introduced in [6, 7]. It relies on the assumption that flux contributions
of separate waves can be decoupled and uses multidimensional waves transported from
infinitely many propagation directions.

Our motivation to use a multistate Riemann problem came from previous studies of the
weak shock reflection problem, a problem that may be interpreted as a multistate Riemann
problem [2, 10].

In this paper, we construct a Riemann solver based on two-dimensional linear wave
contributions to the numerical flux. The resulting numerical flux can be viewed as a one-
dimensional flux normal to the cell boundaries plus the correction terms resulting from the
waves emanating from the corners, which are computed using a multistate linear Riemann
solver. The formulas generalize results obtained in [8] for arbitrary angles and for all the
waves.

For small CFL numbers the contributions of one-dimensional waves dominate the flux,
which explains a good performance of direction-split solvers in practice. The multidimen-
sional flux corrections increase the stability, allowing large time steps and accuracy, although
the improvements are often marginal. The overall efficiency may increase or decrease de-
pending on the problem, on grids, and on the choice of the multidimensional method.

In the following section, the finite volume formulation on a hexagonal and rectangular
grid is discussed. A detailed construction of the two-dimensional linear Riemann solver
is described for the Euler equations of gas dynamics in Section 3. Numerical examples
illustrating the performance of the method, including a second-order-accurate version on
regular rectangular as well as hexagonal Delaunay–Voronoi dual meshes, are presented in
Section 4.

In the Appendix we derive the analytical solution to a multistate linear Riemann problem
for the Euler equations of gas dynamics.

2. THE FINITE VOLUME FLUX COMPUTATION

In this section we describe the use of the linear multistate Riemann solver in the simple
case involving three-state initial data in a cell-centered finite volume method on a hexagonal
grid. An example of such a grid, a regular Delaunay–Voronoi dual mesh, is shown in Fig. 1.
Consider an integral form of a system of hyperbolic conservation laws

d

dt

∫
A

u dS+
∫
0

f · n dl = 0, (1)

whereu is one of the conserved variables,A and0 represent the volume and the boundary
of the control region, andn is the outward normal to the cell. Integrating in time and over
the computational cell, shown in Fig. 1, gives the finite volume approximation,

un+1
i j = un

i j −
1

A

∑
k

∫ 1t

0
dt
∫
0k

f · n dl, (2)
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FIG. 1. Control volume of a dual Delaunay–Voronoi hexagonal mesh.

whereun
i j represents the cell average at timetn and0k is the length of the edge of the compu-

tational cell. The cell averages are assumed to be given, while the fluxes are approximated
using the values on the edge computed as solutions to the 3- and 2-state linear Riemann
problems.

The initial data needed to determine the values of the flux densityf along one of the edges
consist of four states, as shown in Fig. 2.

The circles in this figure represent positions of the sonic wave fronts based on the aver-
age sound speed of the three surrounding states. The centers of the sonic circles are shifted
by the position vector−ū1t to account for the advection with average velocityū. Thus,
the numerical flux across the sections of the edge, denoted bye1, e3, results from multidi-
mensional waves originating from the corners of the computational cell. These fluxes are
approximated using solutions to the 3-state linear Riemann problems described in the Ap-
pendix. For example, in Fig. 2, the flux across the sectione1 is computed asf(u∗(x, y, t)),
whereu∗(x, y, t) is the solution of the 3-state Riemann problem with the initial data from
the cellsO1, O2, andO3. The flux across the sectione2 is determined only by the states
O2 andO3 and can be computed using a 1-D Riemann solver. The resulting numerical flux

FIG. 2. Flux computation using three-state Riemann problems.
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can be viewed as a one-dimensional flux across the cell boundaries plus the corrections
resulting from the waves emanating from the corners.

The linear system that is solved in the linearization cell, shown in Fig. 2 in dashed lines,
is of the form

Ut + ĀUx + B̄Uy = 0, (3)

whereU is the perturbed state vector and the matricesĀ andB̄ are the Jacobian matrices of
the physical fluxes. They are evaluated at an intermediate stateŪ . This stateŪ is a convex
combination of the surrounding states shown in Fig. 2,

Ū = ω1U1+ ω2U2+ ω3U3, (4)

with 0≤ ωi ≤ 1, i = 1, 2, 3, andω1+ ω2+ ω3 = 1. In the numerical experiments pre-
sented in Section 4 we used uniform weighting. The Roe-type weights [9] did not produce
any difference in our examples. To integrate the flux density function in each section, we
have found the midpoint quadrature rule to be adequate in practice.

The procedure for the flux computation based on piecewise constant initial data, results in
the scheme that is only first-order accurate in space. To extend the scheme to second order,
we employ a MUSCL-type [19] approach, in particular the variant of the two-dimensional
van Leer–Hancock scheme as described in [9]. First, the gradients in each computational
cell are estimated and the values of the primitive variables, density, velocity, and pressure
(denoted byw) are reconstructed as, e.g.,

w(x, y) = w(xc, yc)+ φ∇w dr , (5)

at cell boundaries, wheredr is the distance from the cell center to the point on the edge,
andφ is a limiter described below. Then the gradients∇w = (∇wx,∇wy) in each cell are
predicted using the discretization of the Green’s formula

∇w ∼= 1

A

∫
A

n∇w dS= 1

A

∫
0

nw dl ∼= 1

A

∑
e⊂0
|e|wene, (6)

where summation is over a cell boundary,|e| is the edge length, and the valueswe on the
edge are averages of the neighboring cells as illustrated in Fig. 1,

we = wi, j + wi, j−1

2
. (7)

Alternatively, the gradient can be computed using the path of integration going through
the surrounding cell centers. Both approaches are centered with respect to the cell center
and result in second-order-accurate approximation of the gradient [9]. We used the latter
approach in the numerical examples in Section 4. To avoid developing oscillations in the
solution, the gradients are multiplied by the limiter. Here we use a minmod-type limiter as
defined in [14]:

φ = min


1

mink

( |wk −maxpath(wk)|
|wk −maxcell(wk)|

)
mink

( |wk −minpath(wk)|
|wk −mincell(wk)|

)
.
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Here indexk runs over the components of the primitive variable state vector, so there is one
limiter for all variables. The minimum and maximum over the path are found by examining
the values on the edge used in the gradient evaluation sum in (6); the maximum and minimum
over the cell are found by comparing values at the cell corners that are approximated using
linear interpolation (5) without the limiter,φ = 1. For the configuration shown in Fig. 2
predicted values are calculated at the cell face center for the 1-D Riemann problem, and
at the cell corners for 3-state 2-D Riemann problems. For the second-order-accurate time
integration, the solution is first updated to timet + 1t

2 using the first-order scheme

un+1/2
i j = un

i j −
1t

2A

∑
k

0k8
n
k, (8)

where8k denotes approximation to the flux through thekth edge. Then these values are used
in the prediction and limitation procedure described above. The final solution is obtained
using fluxes computed from the Riemann problems based on these predicted values,

un+1
i j = un

i j −
1t

A

∑
k

0k8
n+1/2
k . (9)

3. THE MULTISTATE LINEAR RIEMANN SOLVER

Consider two-dimensional Euler equations linearized with respect to a constant back-
ground state,Ū = (ρ̄, ū, p̄), where the corresponding variables denote density, velocity
ū = (ū, v̄), and pressure of the gas in a moving framex′ = x − ūt, y′ = y− v̄t .

The linearized Euler equations can be written in the moving frame as (dropping the
primes)

ρt + ρ̄∇ · u = 0,

ut +∇ p/ρ̄ = 0, (10)

pt + ρ̄c̄2
s∇ · u = 0,

wherec̄s denotes the background sound speed.
The multistate piecewise constant initial data can be written as a superposition of data

concentrated in a single wedge of arbitrary angle. Therefore it is sufficient to work out the
formulas for one of the wedges shown in Fig. 2.

The solution can be thought of, in Fourier space, in terms of the eigenvalues and the
eigenvectors of the matrixik1 Ā+ ik2B̄, for Eq. (3), withk1 andk2 being the dual Fourier
variables ofx and y; or it can be thought of directly in physical space using well-known
solution to the two-dimensional wave equation. Here we describe the latter approach.

Eliminating the velocity from the last two equations of the system (10) shows that the
pressure satisfies the wave equation

ptt − c̄2
s1p = 0,

p(x, y, 0) = p0(x, y),

pt (x, y, 0) = −ρ̄c̄2
s∇ · u(x, y, 0).
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FIG. 3. Structure of a linear three-state 2-D Riemann problem.

The solution is given as a convolution in space of the initial data with the two-dimensional
free space Green’s function for the wave equation

p(x, y, t) = 1

2π c̄s

∂

∂t

∫
ξ

∫
η

p0(ξ, η)dξ dη√
c̄2

st2− (x − ξ)2− (y− η)2

− ρc̄s

2π

∫
ξ

∫
η

∇ · u0 dξ dη√
c̄2

st2− (x − ξ)2− (y− η)2 , (11)

where integration is over the area(x − ξ)2− (y− η)2 ≤ c̄2
st2.

The first integral in Eq. (11) gives an expression for the perturbation resulting from the
initial piecewise constant pressure distribution. It is evaluated explicitly in the Appendix.
The resulting expression depends on the number of crossings of the sonic circle, centered
at the point of evaluation(x, y), with the discontinuity lines in the initial data as shown in
Fig. 3. The second integral gives an expression for the pressure perturbation resulting from
initial divergence of the piecewise constant velocity field. Note that the divergence at the
origin, pointO in Fig. 3, is zero since the velocity jumps stay finite across the discontinuity
lines, while the surrounding area shrinks to zero.

Once the pressure is determined, the density can be computed noting that the first and
the last equations of the system (10) imply

ρ(x, y, t) = ρ0+ (p(x, y, t)− p0)
/

c̄2
s. (12)

The first term represents the advection of the initial density resulting from the entropy wave,
while the second term is due to the acoustic waves.

Finally, the velocity can be computed by taking the gradient of the pressure followed by
the integration in time,

u(x, y, t) = u(x, y, 0)− 1

ρ̄

∫ t

0
∇ p dt. (13)
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This equation accounts for both vorticity and acoustic mode contributions tou. To get back
to the original frame of reference,x and y in the above formulas need to be replaced by
x − ūt andy− v̄t , respectively.

4. NUMERICAL EXAMPLES

In this section, through numerical experiments, we illustrate the performance of the
proposed method and compare it with other schemes. The experiments were done on regular
rectangular and hexagonal grids. The flux integrals in (2) were approximated using the
midpoint rule that requires single evaluation of the integrand. A constant ratio of specific
heats,γ = 1.4, is used in all examples.

The first example is a two-dimensional Riemann problem with initial data consisting of
two weak shocks and two slip lines,

ρ = 0.5313, p = 0.4, u = 0.0, v = 0.0 if x > 0, y > 0

ρ = 1.0, p = 1.0, u = 0.0, v = 0.7276 ifx > 0, y < 0

ρ = 1.0, p = 1.0, u = 0.7276, v = 0.0 if x < 0, y > 0

ρ = 0.8, p = 1.0, u = 0.0, v = 0.0 if x < 0, y < 0.

At a later time, the solution was obtained using a second-order Roe-type method, with
dimensional Strang splitting and superbee limiter on a 400× 400 grid. It contains a Mach

FIG. 4. Density, 400× 400 hexagonal grid, CFL= 0.5, 1-D solver,t = 0.52.
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FIG. 5. Density, 400× 400 hexagonal grid, CFL= 0.5, 2-D wave solver,t = 0.52.

reflection shown in Fig. 9. This case was analyzed in [6], where it was demonstrated that the
van Leer flux vector splitting method may produce a curved shock connected with two other
shocks, resembling regular shock reflection, while the multidimensional solver proposed in
[6] is able to resolve the solution as a Mach reflection using the same number of grid points.

Similarly, we have observed a difference when using solver based on one-dimensional
Riemann problems (2-state solver) computed in the directions normal to the cell edges and
the solver based on the multistate Riemann problem. Figures 4 and 5 show the first-order
solutions at timet = 0.52 obtained using each method with CFL= 0.5, where

C F L = max[max(|u| + c)1t/1x,max(|v| + c)1t/1y]. (14)

Computations in this case were done on a 400× 400 equilateral hexagonal mesh, giving
approximately the same1x as on the rectangular grid of size 400× 400 on the domain of
size [0, 2]× [0, 2]. Note that for such a hexagonal mesh1y = 21x/

√
3. In the solution

shown in Fig. 5, the region along thex = y line is better resolved and is closer to the solution
obtained using a second-order-accurate scheme. The same result, an improved resolution,
is apparent when the first-order scheme on a rectangular grid of size 400× 400 is used, as
shown in Figs. 6 and 7. In this case the difference is more pronounced. This can be attributed
to larger corrections because of a 4-state Riemann problem used at the cell corners on the
rectangular grid as opposed to the 3-state configuration of the hexagonal case.
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FIG. 6. Density, rectangular grid, CFL= 0.6, 1-D solver,t = 0.52, enlarged.

The difference between the two becomes more visible with increasing CFL numbers.
The 2-state solver is stable up to CFL= 0.6, while the multistate solver can be run with
CFL up to 1.0. Figure 8 shows the solution obtained using multistate solver with CFL=
1.0, and Fig. 9 is the solution obtained with the second-order method described above.

The second example is a radially symmetric Riemann problem in the form of a dense,
high-pressure circle of gas with zero initial velocity,

ρ = 2, p = 15 if r ≤ 0.13

ρ = 1, p = 1 otherwise.

We have used a second-order scheme with the minmod-type limiter as outlined in
Section 2. Figure 10 shows contour plots of the density att = 0.13 computed using a
2-state linear solver on an 80× 80 rectangular grid. The Courant number in this example is
0.7, which is the maximum for the 2-state solver. Figure 11 shows the solution to the same
problem computed using multistate solver with CFL= 0.7 (maximum CFL in this case is
1.0). Figure 12 shows 1-D cuts along they = 0.5 andx = y lines compared with the highly
resolved solution. It shows that the solution is more isotropic, and the radius of curvature
of the shock at angles not aligned with grid lines is more uniform.

The next example is a two-dimensional Riemann problem that produces double Mach
reflection and a shock propagating at the angle to the grid lines. Initial data in the four
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FIG. 7. Density, rectangular grid, CFL= 0.6, 2-D wave solver,t = 0.52, enlarged.

quadrants are given by, e.g., [11],

ρ = 1.5, p = 1.5, u = 0.0, v = 0.0 if x > 0, y > 0

ρ = 0.5323, p = 0.3, u = 0.0, v = 1.206 ifx > 0, y < 0

ρ = 0.5323, p = 0.3, u = 1.206, v = 0.0 if x < 0, y > 0

ρ = 0.1379, p = 0.029, u = 1.206, v = 1.206 ifx < 0, y < 0.

Solutions for this case were computed on a 400× 400 rectangular grid to timet = 0.6
using a second-order-accurate scheme and CFL= 0.5. Figures 13 and 14 demonstrate the
difference in the resolution and position of the mushroom cap that forms due to the interac-
tion of the dense stream and postshock flow behind the oblique shock. The solution obtained
using the multistate solver is closer to the high-resolution solutions in [11] computed with
the less diffusive monotonized central-difference and superbee limiters. Note that for the
second-order scheme the change in the amount of the numerical diffusion due to different
limiters may be comparable to the difference between the methods with and without 2-D
wave corrections.

The multistate solver adds two additional flux calculations per cell edge. In addition,
for second-order accuracy in time, the multistage integration was used. The number of
expensive function evaluations used in the multistate solver varies depending on the problem.
Overall efficiency (CPU time required to achieve the same quality of the solution) ranged
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FIG. 8. Density, rectangular grid, CFL= 1.0, 1-D solver,t = 0.52, enlarged.

from 100% improvement in the first example to 50% decrease for the third example. In
comparison, CLAWPACK is based on Lax–Wendroff-type time differencing with transverse
wave propagation and requires three one-dimensional Riemann problems per interface, with
only a single time update. It is also more cost efficient. Solvers that do not require solution
of the Riemann problems, such as kinetic and flux-vector splitting schemes, are generally
several times less expensive. In addition, for such solvers, increased cost of only 20% due
to multidimensional corrections was reported by Fey [6].

5. CONCLUSIONS

In this paper we have obtained an exact solution of the multistate Riemann problem in
two dimensions for the linearized Euler equations of gas dynamics and have utilized it in
the construction of a numerical scheme. The numerical flux in our scheme generalizes the
one-dimensional flux by introducing multidimensional wave contributions from the corners
of the computational cell. These waves are computed using a multistate linearized Riemann
problem and the formulas are suitable for finite volume applications on arbitrary grids.

The numerical experiments demonstrate that the additional information improves stability
and reduces numerical diffusion of the scheme. The effect becomes more pronounced for
large CFL numbers. The method also reduces anisotropy of the numerical diffusion and the
grid alignment of the numerical solution.
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FIG. 9. Density, rectangular grid, second-order resolved solution,t = 0.52, enlarged.

APPENDIX

In this appendix we describe in more detail solution of a linear multistate Riemann
problem. In particular we calculate the integrals in the expression (11) for the pressure,
p. Since the problem is linear, the solution can be written as a superposition of the data
concentrated in a single sector of arbitrary angle. Therefore it is sufficient to work out the
formulas for one of the sectors.

First we note that for the regionS1, shown in Fig. 3, the initial value problem reduces to
the one-dimensional wave equation for both pressure and velocity, and the solution can be
written as

p(r , t) = p(r , 0)+ 1

2
[sign[sin(φ − φi )]1pi + ρ̄c̄s(ni ·1ui )],

u(r , t) = u(r , 0)+ 1

2
ni

[
1pi

ρ̄c̄s
+ sign[sin(φ − φi )](ni ·1ui )

]
, (1)

ρ(r , t) = ρ(r , 0)+ (p(r , t)− p(r , 0))
/

c̄2
s,

where indexi corresponds to the line of discontinuityl i = (cos(φi ), sin(φi )) in the ini-
tial data,1pi = pi+1− pi , and1ui = ui+1− ui . Position vectorr = (x, y) = (r cos(φ),
r sin(φ)) refers to the origin at the pointO, ni = (−sin(φi ), cos(φi )) is the unit normal to
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FIG. 10. Density plot for the radially symmetric Riemann problem, 80× 80 rectangular grid, CFL= 0.7, 1-D
solver,t = 0.13.

the linel i . For regionS2 (see Fig. 3), the solution is a superposition of the corresponding
one-dimensional waves.

For regionS3 the solution to the wave equation for pressure can be written as

p(x, y, t) = 1

2π c̄s

∂

∂t

∫
ξ

∫
η

p0(ξ, η)dξ dη√
c̄2

st2− (x − ξ)2− (y− η)2 (2)

− ρc̄s

2π

∫
ξ

∫
η

∇ · u0 dξ dη√
c̄2

st2− (x − ξ)2− (y− η)2 , (3)

where integration is over the area(x − ξ)2− (y− η)2 ≤ c̄2
st2. Consider the first integral in

the expression above, converted to polar coordinates,

1

2π c̄s

∂

∂t

∫
ξ

∫
η

p0(ξ, η)√
c̄2

st2− (x − ξ)2− (y− η)2 dξ dη

= p0(x, y)+ 1

2π c̄s

∂

∂t

∫
ξ

∫
η

p0(ξ, η)− p0(x, y)√
c̄2

st2− (x − ξ)2− (y− η)2 dξ dη

= p0(x, y)+ 1

2π c̄s

∂

∂t

∫ 2π

0

∫ r+

0

1p0(φ
′)r ′√−r ′2+ 2 cos(φ′ − φ)rr ′ + c̄2

st2− r 2
dr ′ dφ′,
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FIG. 11. Density plot for the radially symmetric Riemann problem, 80× 80 rectangular grid, CFL= 0.7, 2-D
wave solver,t = 0.13.

FIG. 12. Comparison of the resolved solution (solid lines), computed on a 400× 400 grid with a second-
order scheme and superbee limiter, and solutions obtained on an 80× 80 grid using two-state (filled circles) and
multistate (open circles) solvers. Left panel shows cuts along they = 0.5 line; right panel shows cuts along the
x = y line.
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FIG. 13. Density, double Mach reflection problem, 400× 400 rectangular grid, 1-D solver,t = 0.6.

wherer+ is the distance between the evaluation point(x, y) and the sonic wave front,

r+ = r cos(φ′ − φ)+
√

c̄2
st2− r 2 sin2(φ − φ′)).

Integration with respect tor ′ gives∫ r+

0

r ′√−r ′2+ 2 cos(φ′ − φ)rr ′ + c̄2
st2− r 2

dr ′

=
√

c̄2
st2− r 2+ r cos(φ′ − φ)

(
π

2
+ arctan

r cos(φ′ − φ)√
c̄2

st2− r 2

)
.

Dropping the term that is independent of the time and integrating with respect toφ′ we
get

∫ φi+1

φi

(√
c̄2

st2− r 2+ (r cos(φ′ − φ)) arctan
r cos(φ′ − φ)√

c̄2
st2− r 2

)
dφ′

= r sin(φ − φ′) arctan
r cos(φ′ − φ)√

c̄2
st2− r 2

∣∣∣∣∣
φi+1

φi

+ cst arctan

(√
1− r 2

c̄2
st2

tan(φ − φ′)
)∣∣∣∣∣

φi+1

φi

.
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FIG. 14. Density, double Mach reflection problem, 400× 400 rectangular grid, 2-D wave solver,t = 0.6.

The second term is discontinuous atφ − φ′ = ±π
2 and therefore if it is within the limits

of integration, it will contributeπ2 to the definite integral. Thus, the interval of integration
is split into regions where both the initial data and antiderivative are continuous. Finally,
taking the time derivative and summing over all initial states the integral in Eq. (2) becomes

1

2π

m∑
i=1

1pi Fi ,

whereFi is

Fi = π

2
(1+ sign[cos(φi − φ)])sign[sin(φ − φi )] − arctan

(√
1− r 2

c̄2
st2

tan(φ − φi )

)
.

The integral (3) in the expression for the pressure is a line integral along each ofl i and can
be computed as

ρc̄s

2π

∫
ξ

∫
η

∇ · u0 dξ dη√
c̄2

st2− (x − ξ)2− (y− η)2

= ρc̄s

2π
(ni ·1ui )

∫ r+(φi )

0

1√
−r ′2+ 2 cos(φi − φ)rr ′ + c̄2

st2− r 2
dr ′
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FIG. 15. Density, solution to the linear 2-D Riemann problem,t = 0.15.

= ρc̄s

2π
(ni ·1ui )

(
π

2
+ arctan

r cos(φi − φ)√
c̄2

st2− r 2

)

= ρc̄s

2π
(ni ·1ui )Gi ,

whereGi is

Gi = arctan

(
l i · r√

c̄2
st2− r 2

)
+ π

2
.

Combining formulas for (2) and (3) we obtain the pressure:

p(r , t) = p(r , 0)+ 1

2π

m∑
i=1

1pi Fi + ρ̄c̄s

2π

m∑
i=1

(ni ·1ui )Gi .

To find velocity we take the gradient of the expression forp followed by integration in
time. Applying this to the first integral (2) results in the expression (3), which was computed
above, with∇ · u0 replaced by∇ p0. That evaluates to the term proportional to1pi Gi .
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FIG. 16. Comparison of the exact and numerical solutions to the linear 2-D Riemann problem,t = 0.05.

Noting that the gradient and time integration of (3) can be carried out using an explicit
formula forGi , we obtain the expression

u(r , t) = u(r , 0)+ 1

2π

m∑
i=1

(
ni · wi

l i · wi

)
,

where

wi =
 (ni ·1ui )Fi + 1pi

ρ̄c̄s
Gi

(ni ·1ui ) log
(

r

c̄st +
√

c̄2
st2−r 2

)
 .

The logarithmic term is due to the vorticity mode present in the initial data. Finally, the
density can be determined as in (1).

The example in Fig. 15 shows the exact solution to the linear Riemann problem for
density att = 0.15, with the initial data consisting of three states,

ρ = 2.0, p = 6.0, u = 1.2, v = 0.18 if y > 0 andy >
√

3x

ρ = 1.0, p = 2.2, u = −2.3, v = 1.0 if x > 0 and|y| < √3x

ρ = 4.0, p = 8.5, u = 0.3, v = 0.38 if y < 0 andy < −√3x.

Figure 16 is the exact solution of the pressure and velocity att = 0.05 along the linex =
0.03 for the same problem together with the numerical solution obtained using
MacCormack’s scheme applied to the linearized Euler equations of gas dynamics.



MULTIDIMENSIONAL RIEMANN SOLVER 195

ACKNOWLEDGMENT

The work of G.M.W. was supported in part by NASA Grant NAG5-5180.

REFERENCES

1. R. Abgrall, Approximation du probl`eme de Riemann vraiment multidimensionnel des `equations d’Euler par
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